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ABSTRACT

This study assesses the forecast skill of eight North American Multimodel Ensemble (NMME) models in

predicting Niño-3/-3.4 indices and improves their skill using Bayesian updating (BU). The forecast skill that is

obtained using the ensemblemean ofNMME (NMME-EM) shows a strong dependence on lead (initial) month

and target month and is quite promising in terms of correlation, root-mean-square error (RMSE), standard

deviation ratio (SDRatio), and probabilistic Brier skill score, especially at short leadmonths. However, the skill

decreases in target months from late spring to summer owing to the spring predictability barrier. When BU is

applied to eight NMMEmodels (BU-Model), the forecasts tend to outperformNMME-EM in predictingNiño-
3/-3.4 in terms of correlation, RMSE, and SDRatio. For Niño-3.4, the BU-Model outperforms NMME-EM

forecasts for almost all leads (1–12; particularly for short leads) and target months (from January toDecember).

However, for Niño-3, the BU-Model does not outperform NMME-EM forecasts for leads 7–11 and target

months from June to October in terms of correlation and RMSE. Last, the authors test further potential im-

provements by preselecting ‘‘good’’ models (BU-Model-0.3) and by using principal component analysis to

remove the multicollinearity among models, but these additional methodologies do not outperform the BU-

Model, which produces the best forecasts of Niño-3/-3.4 for the 2015/16 El Niño event.

1. Introduction

The El Niño–Southern Oscillation (ENSO) phenom-

enon is a dominant atmospheric–oceanic mode in the

tropical Pacific with a dominant time scale of 2–7 years

(e.g., Philander 1983; Rasmusson and Wallace 1983;

Trenberth 1997;Wyrtki 1975), stronglymediating global

weather and climate (e.g., Alexander et al. 2002;

Hoerling et al. 1997; Rasmusson and Wallace 1983;

Wang et al. 2000; Webster and Yang 1992; Wyrtki 1973;

Zhang et al. 2013). The predictability of the global cli-

mate system strongly depends on the prediction of

ENSO, which is the largest source of predictability for

North Atlantic and Pacific climate, for U.S. pre-

cipitation, and for the Asian summer monsoon (e.g.,

Kumar et al. 2017; Xue et al. 2013; Zhu et al. 2013). It is

therefore crucial to advance our understanding and to

make timely and reliable forecasts of ENSO.

In recent decades, major advancements have been

made in understanding and forecasting ENSO (e.g.,
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Cane et al. 1986; Battisti and Sarachik 1995; Clarke 2008;

L’Heureux and Thompson 2006; Philander 1983;

Sarachik and Cane 2010; Stuecker et al. 2015;

Wittenberg et al. 2014; Jia et al. 2015), due to the im-

proved capability of fully coupled climate models (e.g.,

Bellenger et al. 2014; Capotondi 2013; Collins 2000;

Delworth et al. 2012; Vecchi and Wittenberg 2010),

better atmospheric and oceanic observations (e.g.,

McPhaden et al. 1998; White 1995; Xie 2004), and im-

proved assimilation techniques to feed observations into

climate models (e.g., Behringer et al. 1998; Chen et al.

1995; Jin et al. 2008; Latif et al. 1998; Zhang et al. 2007).

However, the predictability of ENSO by climate models

is still limited by error growth and model inadequacies

(Jin et al. 2008; Kumar et al. 2017; Xue et al. 2013). For

example, in early 2014, the forecasts using climate

models or statistical methods falsely predicted an El

Niño in the 2014/15 winter (Ludescher et al. 2014;

Tollefson 2014), and a number of studies have attemp-

ted to understand the underlying physical mechanisms

for the failure of the 2014/15 case (e.g., Hu and Fedorov

2016; Imada et al. 2016; Min et al. 2015; Zhu et al. 2016).

The North American Multimodel Ensemble (NMME)

project (Kirtman et al. 2014) has advanced the fore-

casting of ENSO and relevant climate variables by in-

tegrating coupled models from research centers across

the United States and Canada. Kumar et al. (2017)

assessed the predictability of Niño-3.4 in the NMME

models. They found that the predictability of ENSO

strongly depends on seasonality, due to changes in

ENSO’s predictable component, and is the lowest in

spring and summer because of the spring predictability

barrier (e.g., Webster and Yang 1992). Although the

prediction skill based on the ensemble mean of NMME

models is promising, it is of central importance to ex-

amine whether we can further improve the NMME

forecasts by using more advanced statistical methods to

leverage the information from these models. For in-

stance, even though the NMME models have different

numbers of ensemble members ranging from 6 to 28, the

focus of previous studies was on the use of the ensemble

average (weighted equally) to produce the final fore-

casts (Becker et al. 2014; Chen et al. 2017; Kirtman et al.

2014; Kumar et al. 2017). Whether it is possible to im-

prove the forecast skill by using all the individual

members (rather than their ensemble average) has not

been examined in previous studies.

From a methodological perspective, Bayesian updat-

ing (BU) has proven skillful in improving multimodel

forecasts and provides a more realistic description of

predictive uncertainty accounting for between- and in-

model variances (Bradley et al. 2015; Duan et al. 2007;

Hoeting et al. 1999; Luo andWood 2008; Min et al. 2007;

Raftery et al. 2005; Slater et al. 2017). BU implements

Bayes’s theorem to update the probability distribution

of a variable (e.g., NMME-based Niño-3.4 forecasts)

with the new observed information (e.g., observation-

based Niño-3.4). The BU predictions are basically

weighted averages of the individual forecasts of climate

variables (Luo and Wood 2008; Luo et al. 2007; Wang

et al. 2013). BU has been used to improve ENSO fore-

casts with the European Centre for Medium-Range

Weather Forecasts (ECMWF) ensemble simulations

(Coelho et al. 2004). We will use BU to further improve

the NMME forecasting of ENSO by leveraging the

forecasting skill of all of the individual members from

eight NMME models.

The objectives of this study are twofold. First, we aim

to evaluate the skill of the NMME models in predicting

Niño-3/-3.4 indices. Second, we attempt to further im-

prove the NMME forecasts for Niño-3/-3.4 indices by

leveraging the forecasting skill of eight NMME models

using BU. We evaluate the prediction of the 2015/16 El

Niño event using BU and compare the forecasts with the

NMME models. This study aims to advance our un-

derstanding of the current status of the skill of the

NMME models in forecasting ENSO and provides a

new approach to improve forecasts using ensemble

members, which has potential to be broadly applied.

The remainder of this paper is organized as follows.

Section 2 presents the data and methodology, while

section 3 discusses the forecast results based on NMME

and BU. Section 4 includes the discussion and summa-

rizes the main conclusions.

2. Data and methodology

a. NMME models

The available period, ensemble size, and lead months

of the NMME models are summarized in Table 1, with

eight climate models and up to 94 members (Becker

et al. 2014; Kirtman et al. 2014). The hindcasts and

forecasts of sea surface temperature (SST) at 18 3 18
spatial resolution are available from the early 1980s to

the present. We consider eight climate models: Com-

munity Climate SystemModel, version 3 (CCSM3), and

Community Climate System Model, version 4, subset of

CESM1(CCSM4), from the National Center for Atmo-

spheric Research (NCAR), Center for Ocean–Land–

Atmosphere Studies (COLA), and Rosenstiel School

of Marine and Atmospheric Science, University of

Miami (RSMAS); Third Generation Canadian Cou-

pled Global Climate Model (CanCM3) and Fourth

Generation Canadian Coupled Global Climate Model

(CanCM4) from Environment Canada’s Meteorologi-

cal Service of Canada–Canadian Meteorological Centre
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(CMC); operational Climate Forecast System, version 2,

(CFSv2) from the National Centers for Environmental

Prediction (NCEP); Goddard Earth Observing System

Model, version 5 (GEOS5), from the National Aero-

nautics and Space Administration (NASA)’s Global

Modeling and Assimilation Office (GMAO); Geo-

physical Fluid Dynamics Laboratory Climate Model,

version 2.1 (GFDL CM2.1), and Forecast-Oriented Low

Ocean Resolution version of CM2.5 (FLOR B01) from

National Oceanic and Atmospheric Administration

(NOAA)/GFDL. The observed estimates of SST are

obtained from the Met Office Hadley Centre (HadISST,

version 1.1) (Rayner et al. 2003).

b. Niño-3 and Niño-3.4 indices

We focus on the Niño-3 and Niño-3.4 indices in both

the observations and NMME hindcasts/forecasts. These

two indices are defined as the SST anomalies averaged

over theNiño-3 andNiño-3.4 regions. TheNiño-3 region is
bounded by 58S–58N and 1508–908W, while the Niño-3.4
region is bounded by 58S–58N and 1708–1208W. The SST

anomalies in the observations are calculated by removing

the seasonal cycle, which is based on the climatology of

1982–2015. The SST anomalies in the NMME models are

calculated by accounting for the dependence on season

and on forecast lead time with respect to the 1982–2015

period following Kumar et al. (2017).

c. BU

The BU of the NMME forecasts is an implementation

of Bayes’s theorem, in which the probability distribution

of a variableY (i.e., NMME-based Niño-3.4 forecasts) is
updated when new information (e.g., observation-based

Niño-3.4) becomes available. The BU-Model is de-

fined as the method that directly applies BU to the

eight models in NMME. BU has also been used to im-

prove the ensemble forecasts of the ECMWF model

(Coelho et al. 2004), where it was applied to calibrate

and combine both empirical and coupled model ensemble

forecasts. This study employs BU to combine coupled

model ensemble forecasts from the NMME project. The

best estimates of the probability of different outcomes are

defined by the climatology (i.e., the historical averages of

the forecasted variable), represented here by the prior

climatological density function f(y). After a climate model

forecast u is available, the updated (or posterior) density

function is given by Bayes’s theorem to be

f (y j u)5 f
u
(u j y)f (y)
f
u
(u)

, (1)

where fu(u) is the unconditional density of u, and fu(u jy)
is the likelihood function. The posterior density f(y ju)
describes the conditional distribution of the variable

given the climate model forecast u and therefore

represents a probability distribution forecast of the

outcome. Here we apply Bayesian updating to a data

sample, where yi (i5 1, . . . , N) represents the historical

observations of Y [i.e., a sample drawn from the prior

density f(y)]. We represent a sample drawn from the

posterior density f(y ju) using the likelihood function fu
(u jy). By definition, the likelihood function fu(u jy) is

the distribution of a givenmodel forecast u (e.g., July 2010)

conditioned on the observed SST y for the same month. If

we have a hindcasted sample (e.g., monthly observations

from January 1982 to December 2015), the likelihood

function can be estimated by a regression model:

u5 u(y)1 « , (2)

where u(y) is the expected value of the forecast given the

observation y, and « is the residual model error. We

apply the Bayesian updating using a linear regression

approach, so we implement a simple linear regression

model u(y) and assume that the residual errors are

normally distributed with constant variance (see also

Coelho et al. 2004). The likelihood function fu(u jy) is

then

TABLE 1. The available period, ensemble size, and lead months of the NMME climate models. The available period does not reflect the

presence of gaps; the ensemble size indicates the largest number of members per model and does not reflect missing data for one or more

members.

Model Available period Ensemble size Lead times (months)

CCCma CanCM3 1981–present 10 0.5–11.5 (1–12)

CCCma CanCM4 1981–present 10 0.5–11.5 (1–12)

COLA–RSMAS CCSM3 1982–present 6 0.5–11.5 (1–12)

COLA–RSMAS CCSM4 1982–present 10 0.5–11.5 (1–12)

NCEP CFSv2 1982–present 24 0.5–9.5 (1–10)

GFDL CM2.1 1982–present 10 0.5–11.5 (1–12)

GFDL FLOR B01 1980–present 12 0.5–11.5 (1–12)

NASA GEOS5 1981–present 12 0.5–9.5 (1–10)

NCAR CESM1 1980–2010 and 2016–present 10 0.5–11.5 (1–12)
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f
u
(u j y)5 1ffiffiffiffiffiffi

2p
p

s
«

exp

(
2
[u(y)2 u]2

2s2
«

)
. (3)

Using the likelihood function developed for each of

the 94 individual model members or the ensemble av-

erage of the eight models, we assign a weight wi to each

observation yi in the historical sample. The weight wi

represents the likelihood of observing outcome yi given

the climate forecast u. The historical sample is re-

weighted as follows:

w
i
5

f
u
(u j y

i
)

�
N

j51

f
u
(u j y

j
)

, (4)

where the sum of the weights wi is equal to 1. The col-

lection of the weights for all historical observations for

the givenmonth (e.g., for theHadISST-derivedNiño-3.4
from January 1870 to December 2015, minus the fore-

cast year) is thus similar to a discrete probability distri-

bution forecast for each model or model member. This

suggests that the weights show the likelihood of each

discrete outcome given the climate model forecasts.

Weights of 1/N indicate that there is no potential skill

and produce the same distribution as the prior distri-

bution before Bayesian updating, so the output is

equivalent to a climatology forecast (i.e., the average

historical conditions for the same months) and the

member is automatically ignored. For models with a

weak relationship between forecasts and observations,

the Bayesian weights will be close to 1/N, indicating that

each outcome is equally likely. For models with a strong

and significant relationship between forecasts and ob-

servations, the Bayesian weights will be greater than 1/N

and will grow as the potential skill increases (thus giving

more weight to the forecast). Any weights of less than

1/N indicate that the outcome is less likely than the cli-

matology. The weights for every single model are com-

bined to yield a multimodel forecast.

The BU method may be dependent on the skill of the

individual models of the NMME project. Here we assess

whether the skill of the BU can be improved by selecting

the models (‘‘good candidates’’) in which the value of

the correlation coefficient between the forecasted and

observed Niño-3/-3.4 indices is greater than a threshold

value, selected to be 0.3 in this study (BU-Model-0.3).

The threshold of 0.3 is selected experimentally based

on the value of correlation coefficient at the 0.05 sig-

nificance level for the study period. We tuned the

threshold to be larger or smaller, and the results did not

change significantly. Moreover, because we cannot

assume that all the GCMs are independent (i.e., simi-

larities exist among different models, and some, like

CCSM3/CCSM4 or CanCM3/CanCM4, are two differ-

ent versions of the same model), we perform principal

component analysis (PCA) on the forecasted Niño-3/-3.4
indices for each NMME model to reduce the multi-

collinearity among individual forecasts [see also Slater

et al. (2017) for an application to the seasonal fore-

casting of precipitation and temperature over Europe

using the NMME data]. Because the forecasts of the

Niño indices with different NMME models are linearly

correlated, the PCA, which transforms the forecasts into

orthogonal principal components, may improve the

forecasts by reducing the multicollinearity. We then

apply BU to the loadings of all the PCs (BU-Model-

PCA). Similar to BU-Model-0.3, we also focus the

Bayesian updating on the loadings of the PCs having

correlation with the observed Niño-3/-3.4 indices

greater than 0.3 (BU-Model-PCA-0.3). The four BU

methods are summarized in Table 2.

d. Forecast verification metrics

To quantify the skill of the different models and ap-

proaches with respect to the observations we use the

correlation coefficient, the root-mean-square error

(RMSE), and the standard deviation ratio (SDratio) as

deterministic metrics. The SDratio represents the ca-

pability of the forecasts in capturing the dispersion of

the observations (Barnston et al. 2015) and is defined as

the standard deviation of the forecasted El Niño indices

divided by the one for the observations.

We will refer to the correlation between the mean

forecasted Niño indices (of all NMME members) and

observations (NMME-CorM) and to the mean of all the

individual correlations between every NMME-member

and the observations (NMME-MCor) (i.e., the correla-

tion of the means vs the mean of the correlations). To be

consistent with the calculation of other skills (e.g.,

RMSE and SDratio), we also refer to the method based

TABLE 2. Description of the four ways in which BU is applied in

this study.

BU methods Description

BU-Model BU is applied to the eight models in

NMME.

BU-Model-0.3 BU is applied to the NMME models

for which the correlation with

observed El Niño indices is greater

than 0.3.

BU-Model-PCA BU is applied to the loadings of PCs

for the eight models in NMME.

BU-Model-PCA-0.3 BU is applied to the loadings of PCs

for the eight models for which the

correlation with observed El Niño
indices is greater than 0.3.
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on the ensemble mean of all NMME members/models

(NMME-EM).NMME-CorM is a special case ofNMME-

EM for calculating correlation. Although NMME-CorM

and NMME-MCor are forecast verification measures, we

use them as forecast methods to be easily compared with

BU hereafter.

In addition to deterministic verification metrics such as

correlation andRMSE,we also employed the probabilistic

verification metric Brier skill score (BSS) (Wilks 2011).

The Brier skill score is based on the Brier score (BS),

which is a scalar metric of the accuracy of a probabilistic

forecast for dichotomous events and is defined as follows:

BS5
1

n
�
n

i51

( f
i
2O

i
)2 , (5)

where n is the number of forecasts, fi is the forecast

probability of the occurrence of an event for the ith

forecast, and Oi is the ith observed probability, which is

defined to be 1 if the event occurs and 0 if it does not.

The Brier skill score is defined as follows:

BSS5 12
BS

f

BS
cli

, (6)

where BScli denotes the Brier score for climatological

forecast (with a probability of 0.33 for each tercile), while

BSf is the Brier score for the forecast based on NMME or

BU. For a climatological forecast, the BSS is zero. In this

study, a probabilistic forecast of an event in each tercile

was implemented. The three categories are defined as

‘‘above normal,’’ ‘‘normal,’’ and ‘‘below normal’’ based

on the values of theNiño-3/-3.4 index in the forecasts.We

focus on the forecast skill of above normal and below

normal events with warm/cold SST anomalies.

To test whether the differences in forecast skill among

the different forecast methods are statistically signifi-

cant, we use the Wilcoxon signed-rank test. This test

considers the magnitude of the differences in forecast

skills (DelSole and Tippett 2014), and its statistic is de-

fined as follows:

WT5 �
n when dn.0

(rank of j d
n
j) , (7)

where dn 5 0 is assumed to never occur. The finite-

sample distribution of this statistic is invariant to the

distribution of the loss differential if the distribution is

symmetric about zero.

3. Results

Figure 1 shows the observed and predicted composite

SST anomalies for the December–February (DJF) El

Niño and La Niña events between 1981 and 2016 based

on observations and NMME forecasts initialized in

December. Overall, the NMME climate models suc-

cessfully predicted the SST anomalies in the tropical

Pacific, especially in the Niño-3 and Niño-3.4 regions.

During El Niño years, the forecast SST anomalies in the

Niño regions are slightly weaker than the observations,

with the exception of the GFDL CM2.1 and the NASA

GEOS5 climate models. During La Niña years, the SST
anomalies in the NMME models tend to extend far-

ther west than the observations, with the exception of

CFSv2, which predicts the SST anomalies at locations

similar to the observations. The negative SST anoma-

lies in GFDL CM2.1, CanCM3, CanCM4, CCSM3, and

NASA GEOS5 models are slightly stronger than those

in the observations (Fig. 1).

The model biases during El Niño and La Niña years

are shown in Fig. S1 (see the online supplemental ma-

terial), supporting the above discussions on SST anom-

alies. For example, GFDLCM2.1 has warm biases in the

tropical Pacific, especially west of the Niño-3.4 region

during El Niño years. CanCM3, CanCM4, and CCSM3

also show weak warm biases west of the Niño-3.4 region.
Most of the models show cold biases in the Niño-3 and

Niño-3.4 regions during El Niño years. During La Niña
years, most of the models feature cold biases in the

Niño-3 and Niño-3.4 regions except CCSM4, with warm

biases in the Niño-3.4 region.

Figure 2 displays the temporal evolution of the Niño-
3.4 index during El Niño and La Niña years. Overall, the

NMMEmodels capture the temporal evolution of the El

Niño/La Niña periods quite well, though there are some

biases in all the NNMEmodels. Given such biases in the

SST anomalies and evolution, the BU could overcome

some of these biases by integrating useful information

from historical observations.

NMME-CorM shows higher correlation value for

Niño-3/-3.4 than NMME-MCor (Figs. 3 and 4), in-

dicating that the ensemble mean of NMME forecasts is

better than individual NMME forecasts. Figure 3 shows

the skill of the Niño-3 forecasts for target months from

January to December and lead months from 1 to 12 with

different forecast methods. Overall, BU performs better

in target months from January to March than in other

target months, consistent with the changes of forecast

skill of NMME-CorM with respect to different target

months. Overall, NMME-CorM performs better in tar-

get months during boreal autumn and winter than in

target months during spring and summer in terms of

correlation (Fig. 3), consistent with Barnston et al.

(2015) and Kumar et al. (2017), who found that the

predictability of ENSO is the lowest in spring and

summer. The skill of NMME Niño-3 forecasts depends
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on the lead month, and the skill of NMME-CorM drops

with increasing lead time (Fig. 3). For example, the

forecast skill of NMME (i.e., NMME-CorM) for Niño-3
in terms of correlation is close to 1 (e.g., 0.95–0.98) at

lead month 1 but drops to ;0.6 for target months from

January to April and to ;0.4 for target months from

May to December at lead month 12 (still significant at

the 5% significance level). This reduction in forecast

skill with increasing lead time suggests that NMME-

CorMproduces promising results for theNiño-3 index in
terms of correlation, with a strong dependence on lead

month and target month (Barnston and Tippett 2013;

Barnston et al. 2012, 2015; Jin et al. 2008; Kumar et al.

2017; Tippett et al. 2012).

Figure 3 also shows the forecasts of Niño-3 in all target
and initialization months using the four BU methods

FIG. 1. Composite SST anomalies (shading; 8C) for theDJF (left) El Niño events (1982/83, 1986/87, 1991/92, 1997/
98, 2002/03, 2009/10, 2015/16) and (right) La Niña events (1984/85, 1988/89, 1995/96, 1998/99, 1999/2000, 2007/08,

2010/11) in (top) observations andNMME forecasts initialized inDecember. The blue and red rectangles represent

Niño-3.4 and Niño-3 regions, respectively.
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listed in Table 2. For target months from January to

May, the BU-Model generally outperforms the skill of

NMME-CorM/NMME-EM. As expected, the forecast

skill in both NMME and BU forecasts drops for

increasing lead times. Similar to the skill obtained from

the equal weighting of theNMME forecasts, the forecast

skill with the BU-Model drops at a slower rate in target

months from January to April than in target months

FIG. 2. Evolution of Niño-3.4 in observations (black) and in the NMME forecasts with climate models for El Niño
(red) and La Niña (blue) events. Jan(0) represents the January in mature El Niño/La Niña phases.
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from May to December when the lead month increases

from 1 to 12. For example, the forecast skill of the BU-

Model for Niño-3 in terms of correlation is around 0.95–

0.98 at lead month 1, around 0.6 for target month from

January to April, and around 0.4 at lead month 12 for

May–December target months. For June–July target

months, the BU-Model performs slightly better than

NMME-CorM for short lead months 1–4, after which

the opposite is true. BU-Model-PCA is developed

by applying BU to the loadings of all the PCs and aims

to improve the forecast skill of BU by removing

collinearity (see section 2 for details). In these target

months, the BU-Model-PCA does not outperform the

BU-Model. For August–December target months, the

BU-Model generally performs better than the NMME-

CorM in forecasting Niño-3 (Fig. 3).

We build the BU-Model based on the NMME fore-

casts with a correlation of 0.3 or higher (BU-Model-0.3)

to test whether we can improve the performance of BU

by keeping only the forecasts having a higher correlation

with observations. BU-Model-0.3 does not perform

better than the BU-Model for almost any of the target

FIG. 3. Skill of the Niño-3 forecasts for target months from January to December and lead months from 1 (0.5) to 12 (11.5) with BU-

Model (red solid), BU-Model-0.3 (red dashed), BU-Model-PCA (orange solid), andBU-Model-PCA-0.3 (orange dashed). NMME-CorM

(black solid line) denotes the skill of the ensemble mean (equally weighted) of all the NMMEmembers, while NMME-MCor (blue solid)

denotes the mean skill of all NMMEmembers. The y axis indicates the strength of the correlation between the forecasts and the observed

Niño indices. In the box plots, the circle and the red line within the box represent the mean and the median, respectively; the limits of the

box represent the 25th and 75th percentiles, while the limits of the whiskers are the 5th and 95th percentiles.
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months (Fig. 3), and this statement holds for different

threshold values of the correlation coefficient (figure not

shown). Thus, the skill does not improve by focusing

on a subset of models that exhibit a stronger relationship

between forecasts and observations. The BU-Model-

PCA/BU-PCA-Model-0.3 can slightly outperform

BU-Model/BU-Model-0.3 for very short lead months

(Fig. 3). However, BU-Model/BU-Model-0.3 performs

much better than the BU-Model-PCA/BU-PCA-Model-

0.3 for longer lead months (Fig. 3). This suggests that the

application of PCA to the NMME forecasts prior to BU

does not lead to a consistent improvement in the forecast

skill for all lead months.

Figure 4 shows the results for Niño-3.4, which are

similar to those shown for the Niño-3 index (Fig. 3). For

example, the BU-Model and BU-Model-0.3 outperform

the NMME-CorM in target months January–May and

September–December (Fig. 4). However, for June–

August target months, the BU-Model/BU-Model-0.3

performs better than NMME-CorM only for short lead

months. Previous studies have shown the difficulties in

forecasting ENSO during June–August because of the

spring predictability barrier, which presents a challenge

(Barnston and Tippett 2013; Barnston et al. 2012, 2015;

McPhaden 2003; Tippett et al. 2012). The spring pre-

dictability barrier is responsible for the drop in forecast

skill during boreal spring and for the drop in skill of the

forecasts made during boreal spring for the following

seasons. For example, the skill of forecasts initialized in

boreal spring drops faster than that of the forecasts

FIG. 4. As in Fig. 3, but for the Niño-3.4 index.
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initialized in August or November (Jin et al. 2008).

Previous studies have reported low forecast skill for

target months June–August initialized during spring

(e.g., Torrence and Webster 1998; Jin et al. 2008;

Barnston et al. 2015). Because the BU-Model-0.3 and

BU-Model-PCA-0.3 do not outperform the BU-Model

and BU-Model-PCA, respectively, we will focus on the

performance of BU-Model and BU-Model-PCA in

forecasting Niño-3/-3.4 henceforth.

The forecast skill (correlation) for Niño-3/-3.4 using

the BU-Model generally outperformsNMME-CorM for

January–May and September–December target months

(Figs. 3 and 4). For June–August target months, the BU-

Model does not show improvements in forecast skill for

Niño-3/-3.4 with respect to NMME-CorM. Figure 5

shows a summary of the values of the correlation co-

efficient between forecasted and observed Niño indices

using NMME-CorM, BU-Model, and BU-Model-PCA.

The spring predictability barrier in forecasting El Niño/
La Niña is evident for all the forecasts, with diminished

skill for target months from late boreal spring to boreal

summer. The dependence of skill on season and lead

month is also obvious for all the forecasts. Overall, the

BU-Model outperforms NMME-CorM in forecasting

Niño-3/-3.4, particularly for short lead months 1–5. In

general, the BCA-Model-PCA does not outperform

BU-Model in forecasting Niño-3/-3.4 (Fig. 5). Figure S2

illustrates the differences in forecast skill between BU-

Model/BU-Model-PCA andNMME-CorM forNiño-3.4
and Niño-3. In general, the BU-Model outperforms

NMME-CorM for almost all short lead months. How-

ever, the BU-Model shows some weakness in fore-

casting Niño-3.4/-3 for June–August target months after

lead month 5. BU-Model-PCA shows similar results

compared with the BU-Model for short lead months.

However, the BU-Model-PCA performs worse than the

BU-Model for August–September target months and

lead months 10–12 for Niño-3.4 and for June-November

target months and lead months 10–12 for Niño-3. The
largest improvements in forecasting Niño-3/-3.4 made

by BU-Model/BU-Model-PCA compared with NMME-

CorM lie in the August–December target months and

lead months 1–7.

The SDratio measures the ability of the forecasts to

capture the dispersion of the observations. We find the

NMME-EM forecasts tend to be overdispersed in

comparison with the observed values for long lead

months, especially in the January–June and October–

December target months (Fig. 6, top). Moreover, the

NMME-EM forecasts tend to underestimate the dis-

persion in the observations for lead months 1–4 and

July–October target months. The BU-Model largely

outperforms the NMME-EM forecasts in terms of

SDratio for almost all lead and target months because

the SDratio values in BU-Model are closer to 1 (Fig. 6,

middle). BU-Model-PCA improves the SDratio by re-

ducing dispersion for very short lead months but in-

creases dispersion for the longest lead months 10–12

(Fig. 6, bottom). This suggests that BU-Model-PCA

does not improve the forecasting of ENSO compared

with the BU-Model.

The RMSE values of the NMME-EM forecasts of

Niño-3/-3.4 tend to decrease as the lead month becomes

shorter (Fig. 7, top). The largest RMSE occurs in the

lead months 11–12 and the target months October–

December (OND). For Niño-3.4, there are large RMSE

values in the NMME-EM forecasts in the January target

month with 10–12 lead months (Fig. 8, top). Overall, the

RMSE is smaller for the BU-Model than for NMME-

EM, particularly for the short lead months, consistent

with the improvements in correlation in Figs. 5 and 7

(middle). Moreover, the RMSE in BU-Model-PCA is

also slightly smaller than that in NMME-EM for short

lead months (Fig. 7, bottom). To support the above

discussions, Fig. S3 illustrates the differences in the

RMSE values between the BU-Model and NMME-EM

and between BU-Model-PCA and NMME-EM. Over-

all, BU outperformsNMME-EMby producing a smaller

RMSE in Niño-3/-3.4 indices, especially for short lead

months; BU-Model-PCA produces similar RMSE

compared with BU-Model. It is noted that BU-Model

performs much better than BU-Model-PCA in terms of

correlation coefficient between forecasted and observed

Niño indices for long lead months (Figs. 4, 5, and S2).

However, the differences in RMSE between BU-Model

and BU-Model-PCA appear to be smaller compared

with the difference in correlation.

We use the Wilcoxon signed-rank test (DelSole and

Tippett 2014) to test whether the differences in the forecast

skill (e.g., correlation andRMSE) betweenBU-Model and

NMME are statistically significant. Figure 8 shows that the

differences inRMSE forNiño-3.4 betweenBU-Model and

NMME are statistically significant at the 5% level for lead

months 1–5, identical to those between BU-Model-PCA

andNMME. For the forecasts of Niño-3, the differences in
RMSE between BU and NMME are significantly signifi-

cant for lead months 1–6, and this is also true for differ-

ences between BU-Model-PCA and NMME. For the

correlation coefficient, the differences inNiño-3.4 between
BU-Model and NMME are statistically significant at lead

months 1–5, and this is also true for the differences be-

tween BU-Model-PCA and NMME (Niño-3.4), between
BU-Model and NMME for Niño-3, and between

BU-Model-PCA and NMME for Niño-3. There are

some significant differences between BU-Model-PCA

and NMME for Niño-3 and Niño-3.4 at lead month 12.
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In addition to the deterministic measures of skill (i.e.,

correlation and RMSE), we also use Brier skill score to

measure the forecast skill with BU-Model and NMME.

We focus on the forecasts for the upper and lower

terciles of the Niño-3.4 and Niño-3 indices. Overall, the

BUmethod outperforms NMME for the upper tercile of

Niño-3.4 and Niño-3 at shorter lead months (Fig. 9) and

for the lower tercile, especially at short lead months

(Fig. 10). Overall, the forecast skill for the lower tercile

of Niño-3.4 is higher than for Niño-3 (Fig. 10).

The 2015/16 El Niño event is one of the strongest

El Niño events since 1870 (Blunden and Arndt 2016).

Here we use this El Niño event as a case study to

show the capability of the BU-Model in forecasting

the Niño-3/-3.4 indices. We focus on the observed

Niño-3/-3.4 index averaged over OND in 2015 with a

value of 2.6. The Niño-3/-3.4 indices forecasted by the

BU-Model are generally much closer to the observations

than those forecasted by NMME-EM up to the lead

month 10 (Fig. 11). The forecasts of Niño-3/-3.4 indices

FIG. 5. The correlation values (shading) in (top) NMME-CorM/NMME-EM, (middle) BU-Model, and (bottom)

BU-Model-PCA for (left) Niño-3.4 and (right) Niño-3.
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obtained during theONDof 2015/16 with the BU-Model

also producemuch smaller biases than those achieved by

NMME-EM even for leadmonth 10. In the leadmonth 9

the forecasted Niño-3 index with NMME-EM is ;0.5

while the index obtained with the BU-Model is;1.3. In

the lead month 8, the forecasted Niño-3 index during

OND 2015 with NMME-EM is ;1 while the forecasted

Niño 3 with BU-Model is;2. Therefore, the BU-Model

performs much better than NMME-EM in forecasting

this most recent strong El Niño event.

FIG. 6. SDratio (shading) using forecasts/observations in (top) NMME-EM, (middle) BU-Model, and (bottom)

BU-Model-PCA for (left) Niño-3.4 and (right) Niño-3. A value of 1 is the ideal value.
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We have also examined whether longer or more reli-

able observations of SST can influence the forecast skill

of the El Niño events (e.g., 1982/83, 1997/98, and 2015/

16). To accomplish this, we use the observed SST

over the period 1870–2015 (BU-1870) and 1940–2015

(BU-1940) for the BU for the three El Niño events

(Fig. S4). There are some differences in the forecasts

based on BU-1870 and BU-1940; overall, BU-1870

produces better forecast skill than BU-1940 for the

2015/16 El Niño event (Fig. S4), while the skill of BU-

1940 and BU-1870 for the 1997/98 and 1982/83 events

appears to be similar. Based on these analyses, we

cannot find an obvious improvement in the prediction

skill obtained from BU-1870 compared with that from

FIG. 7. RMSE (shading) in (top) NMME-EM, (middle) BU-Model, and (bottom) BU-Model-PCA for (left)

Niño-3.4 and (right) Niño-3.
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BU-1940. Future studies should examine this issue in

more detail.

4. Discussion and conclusions

Timely and accurate ENSO forecasts are likely to

have major societal and economic impacts (e.g., agri-

culture and fishing). The NMME project has advanced

our capability of forecasting key atmospheric and oce-

anic variables. In this study, we have assessed the ability

of a Bayesian updating (BU) approach to improve the

forecasts of the Niño-3/-3.4 indices and compared the

results with those of the equally weighted ensemble

average of the NMME forecasts (NMME-EM).

The forecast skill for Niño-3/-3.4 using NMME-EM

shows strong dependence on lead (initial) month and

target month and is promising in terms of correlation,

RMSE, and SDRatio, especially at short lead months.

For example, the correlation coefficient between fore-

casted (NMME-EM) and observed Niño-3/-3.4 indices

is close to 1 for short lead months, with very small

RMSE errors. The skill in terms of correlation for Niño-
3/-3.4 with NMME-EM drops to 0.4–0.7 at lead month

12. Moreover, the forecast skill of Niño-3/-3.4 with

NMME-EM decreases in target months from late spring

to summer, due to the spring predictability barrier.

Overall, the BU-Model outperforms NMME-EM in

predicting Niño-3/-3.4 for almost all the target months

and lead months in terms of correlation, RMSE, and

SDratio. The BU-Model outperforms NMME-EM

forecasts in Niño-3.4 for almost all lead months and

target months. However, it does show some weaknesses

in forecasting Niño-3.4/-3 for June–August target

months and long lead months (e.g., 7–10) in terms of

correlation, and it does not outperform the NMME

forecasts for Niño-3 for June–October target months

and lead months 7–11. A caveat of this study is that the

ENSO forecast can vary over decadal scales (Barnston

et al. 2012; Zhao et al. 2016), and wewould need to study

longer periods to obtain more robust comparisons be-

tween Bayesian updating and NMME. For the 2014/15

event, the prediction skill of Niño-3.4 during October–

December with BU-Model is higher than NMME-EM

for lead months 1–5 and 10, consistent with a better skill

of BU at shorter lead months (Fig. S5). Overall, the BU-

Model performs better than NMME-EM for Niño-3/-3.4
in terms of SDratio, but focusing on a subset of GCMs

that showed a stronger relationship between forecasts

FIG. 8. Wilcoxon signed-rank test results for (left) RMSE and (right) correlation coefficient in different BU

versions and NMME for Niño-3 and Niño-3.4 indices at lead months 1–12. Dark-shaded regions indicate that the

differences are statistically significant.
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and observations does not improve the overall forecast

skill. We also used PCA to examine the potential im-

pacts of correlation among models on forecast skill, but

we did not find any significant improvement. Mean-

while, the performance of BU in forecasting Niño-4
(Fig. S6) is slightly worse than for Niño-3/-3.4. This

might be due to the intrinsic low predictability of central

Pacific El Niño events. Further studies are required to

improve the BU for Niño-4, possibly by using a more

sophisticated likelihood function and prior distribution.

The prediction skill that is obtained using BU-Model

is comparable to, or slightly better than, that of current

prediction models/schemes for Niño-3/-3.4. For exam-

ple, at a 3-month lead time in the eastern equato-

rial Pacific, an intermediate coupled climate model

produces a correlation of ;0.75 (Zheng and Zhu 2016),

FIG. 9. BSS for the upper tercile in (top)NMME-EM, (middle) BU-Model, and (bottom)BU-Model-PCA for (left)

Niño-3.4 and (right) Niño-3.

15 NOVEMBER 2017 ZHANG ET AL . 9021

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 02/16/21 08:55 PM UTC



while the NMME-EM and BU-Model produce a cor-

relation of more than 0.85. The BU-Model forecast

skill is comparable to the skill that is obtained using

CFSv1 and CFSv2 (with biases adjusted) as reported in

Barnston and Tippett (2013). Our forecasts of Niño-3.4
are also comparable to or slightly better than those ob-

tained in Saha et al. (2014), particularly for short lead

months. Our BU-Model slightly outperforms the re-

sults based on statistical models and dynamic models

reported in Barnston et al. (2012) in terms of correlation

and RMSE.

ENSO plays a central role in exciting teleconnections

that modulate global weather and climate, such as

tropical cyclones, precipitation, and air temperature

(e.g., Alexander et al. 2002; Ropelewski and Halpert

1986; Zhang et al. 2012, 2015, 2016a,b). Thus, our future

work will assess whether the improvements in the pre-

diction skill of Niño-3/-3.4 indices using BU-Model can

FIG. 10. As in Fig. 9, but for the lower tercile.

9022 JOURNAL OF CL IMATE VOLUME 30

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 02/16/21 08:55 PM UTC



heighten the prediction skill of these ENSO-driven

meteorological variables and phenomena.
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